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TRANSFORMATION OF THE BENNET DISTRIBUTION IN A RAREFIED GAS 

Yu. B. Movsesyants and A. S. Chikhachev UDC 533.9 

The usual Bennet distribution of particles in a beam is characterized by a density which 
decreases comparatively slowly with increasing radius; this is a negative factor in the solu- 
tion of problems associated with the formation of a thin, powerful, quasistationary, rela- 
tivistic electron beam (REB). Under sufficiently high pressure of the residual gas the ef- 
fect of the current of secondary electrons of the plasma, produced by the ionization of the 
gas by the beam, on the state of the main beam must be taken into account. As a result of 
this effect, an equilibrium state of the REB with a steeper, than in the case of the Bennet 
distribution, drop in the particle density toward the periphery of the beam can form. 

For sufficiently high currents in the REB (I g 1 kA) the average Larmor radius of the 
electrons of the secondary plasma is shorter than the mean-free-path length 10 (magnetized 
diffusion) and the flow of secondary electrons acquires, owing to the magnetization, a longi- 
tudinal component [i]. The secondary flow can change the parameters of the REB, if the secon- 
dary-electron current is comparable to the beam current. In what follows we shall assume that 
the radius of the tube R 0 is much longer than the effective radius of the beam, the charge 
of the beam is completely compensated, the particle losses in the beam are negligibly small, 
and the frequency of collisions between plasma electrons and the gas is much higher than the 
electron-ion collision frequency. ~These assumptions are reasonable for ne >> nb and ng >> 
neoc/o0, where nb and ne are the density of electrons in the beam and in the plasma, ng is the 
gas density (ng ~ i0 l~ cm-3), Oc is the Coulomb scattering cross section, and o 0 is the cross 
section for scattering of electrons by gas atoms. We shall describe the secondary plasma 
by the hydrodynamic equations, and the primary beam by a system of self-consistent Vlasov 
equations. 

In the kinetic description of a REB, the Bennet distribution is used most often. It 
can be established, for example, as a result of collisions of electrons in the beam with one 
another [2] or with particles in the medium [3]. 

For the distribution function of the electrons in the beam we shall use 

] = • exp  {--ts -q- Pz~o}~ ( 1 )  

where H = c/~ :2 + m2c 2 is the Hamiltonian; Pz = Pz + eAz/c is the z component of the generalized 
momentum; A(z)(r) is the z component of the vector potentSal; ~ is the particle momentum; e 
and m are the charge and mass; and c is the velocity of light. The equilibrium nature of 
the state of the beam described is ensured automatically, if the component of the vector po- 
tential Az(r) satisfies Maxwell's equation 
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Calculation of the current density of the beam according to (i) yields the relation 

](zl) . . . .  I eX~(r) (2)  
8ar~ 

where I is the total beam current (I = 2p0cm/e); r02 = c62/(8v2e2~P02 ) has the dimensions 
of length squares; Xz(r) = eAz/cp0; P0 is a measure of the average transverse energy of the 
beam. If the condition cp0/T - 1 << min (i, p0/mc) holds, then for 6 it is easy to obtain 
the simple expression 6 ~ cp0/T - i. The condition of convergence of the expression for 
j(1) z requires that the inequality cp0 > T be strictly satisfied. When 6 << i, the number 
of backward particles in the main beam is exponentially small. 

To describe the state of the beam it is necessary to determine the longitudinal current 
of electrons in the secondary plasma. The plasma forms as a result of the ionization of the 
neutral gas atoms by the beam, and because of the uniformity of the system in the longitudinal 
direction the equation of continuity can be written in the form 

t = . .  ,m (3 )  
' ~g"J i J  Z -r dr 

where oi is the ionization cross section, j(2)r is the radial component of the current den- 
sity of secondary electrons; and n (2) is the particle density. Here we neglect the burnup 
of the neutral gas (ng= const). Furthermore, we shall assume that the motion of the secon- 
dary electrons is diffusive (the state of magnetized diffusion [i]). This motion, neglecting 
the Coulomb friction, is described by the equation 

' (n(~)r,) + eE + + I v %  B] + ;~o = 0, ---~)V 

where n(=)Te is the pressure of the secondary electrons; Fe,~ is the force of friction be- 
tween the electrons and the neutral gas; VTe is the thermal velocity of the secondary elec- 
trons; 10 is the mean-free-path length; and ~(2) is the mean hydrodynamic velocity. The total 
magnetic field has only an azimuthal component, so that for the longitudinal component of 
the secondary-electron current we obtain 

]~2~ = ~B0]~2) =~ (r) ~j~, (4) 

where ~ = el0/(mCVTe); m(r)~ is the magnetization parameter. 

In order to make use of the averaged hydrodynamic description of secondary electrons 
the Larmor radius rL ~ VTe/mB must be much shorter than the characteristic radius of the beam 
r0. It is not difficult to obtain the estimate rL/r0 - VTe/2ic, i = eI/mc 3. Thus, the dimen- 
sionless beam current i must be quite high. 

The equation for the dimensionless longitudinal component of the vector potential has 
the form 

and, 

dxz 4~e (jp) .(m (5) i - - i t  ' = - - - - w  +Jz J, 
r dr dr po c 

in addition, according to (4), 

cP o 

From these relations it follows that 

](r 2) 

dXz / 4~ .(1) ~ ~---~ +-y-j~ 
r dr dr 

' 4 ~  . P o  ' d%z 
e dr 

whence, with the use of (2) and (3), we find the equation for determining Xz(r): 

158 



dXz r %z 
d r _ d r  + _ ~  e 

r %z d dr ~ 05" ~ e , 
d-'-7 d)~z 

(6) 

where a*= ng~iE 0 Po ic ~ (here the relation h 0 = i/ngO 0) 
VT e 2VT  e 0 o 

For  a* < 1 / 2 ,  Eq. (6 )  has  a s o l u t i o n  o f  t h e  form 

% z = - - 2 1 n  t +  8r--f( t--2a*) , (7) 

which corresponds to the differential form of (6), 

oo 
�9 a ~x~ ~ ~, ~ t , ~ ( ~ ( % , a ~ , "  
d--ir'-~-r + ---~ -e, ------ r ~ dr j 

T0 0 r 

The right side of this equation is the secondary-electron current directed opposite to the 
current in the main beam, i.e., having a "demagnetizing" character. It is evident from the 
relation (4) that if the sign of the current j~2)z is negative, then the sign of the current 
j(2)r will also be negative, i.e., the secondary electrons will move toward the axis, where 
in this case a sink must be provided for the particles (for example, in the form of a very 
thin conductor). 

We shall study a situation which is more interesting from the physical viewpoint, when 
the secondary particles are drained at the walls of the tube, situated at quite a large dis- 
tance away from the axis of the beam. In this case, the reverse current also flows along 
the walls of the tube. Introducing the dimensionless independent variable x = r2/r02, we 
rewrite (6) in the integrodifferential form 

4-Ez  z--s  + e ~ = o~* e d z  . 

0 

(8) 

The choice of the limits of integration on the right side corresponds to dispersing of elec- 
trons away from the axis of the beam; in addition, the relation (7) does not satisfy Eq. (8). 

An equation equivalent to (8) can be simply derived using the hydrodynamic description. 

We take the system (3)-(5) (using B~ c-P~ dlZ)dr " and supplement it by the equation of balance 

of the forces acting on the particles in the beam in the radial direction: 

dQ ( 9 )  
n dr = - - e ~ o B ~  

Here Q(r) is the pressure of the particles in the beam with a Bennet distribution Q = nT, 
~0 = vz/c, and the mean hydrodynamic velocity vz(r) = const. 

From (3)-(5) it is easy to obtain 

T 

c ct r B  ~ __ r i? )  = "(angc4) Bo  f r ' d r ' i ~  1) (r ' ) .  

0 

From (9) it follows that 

r i d j~) 
B0 = cfi0 ]~i) dr " 

E l i m i n a t i n g  B0 f rom t h e s e  r e l a t i o n s ,  we o b t a i n  an e q u a t i o n  f o r  n which i s  e q u i v a l e n t  t o  ( 3 ) .  
We s h a l l  solw~ (8)  w i t h  t h e  bounda ry  c o n d i t i o n  
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%z(0) = dgz/drl ,= o = O. (10)  

The e q u a t i o n  c o n t a i n s  t h e  d i m e n s i o n l e s s  p a r a m e t e r  ~*, whose v a l u e s  can v a r y  ove r  a wide r a n g e .  
I n  p a r t i c u l a r ,  f o r  v a l u e s  o f  t h e  p a r a m e t e r s  c l o s e  t o  t h e  r e a l  v a l u e s  ( s e e  [ 1 ] ) ,  o i  = lO -~s 
cm -2 ,  o 0 = lO - z s  cm -2 ,  Te ~ 0 . 1 - 1  eu  a* ~ i .  The c o n d i t i o n  t h a t  t h e  Larmor r a d i u s  o f  t h e  
s e c o n d a r y  e l e c t r o n s  be s m a l l  f o r  t h e  g i v e n  v a l u e s  o f  t h e  p a r a m e t e r s  a c q u i r e s  t h e  form Y >> 
1 . 7 - 1 7  A, i . e . ,  i t  i s  o b v i o u s l y  met in  t h e  r a n g e  o f  v a l u e s  o f  I unde r  s t u d y .  For  a* = 0, 
the solution of (8), satisfying the conditions (lO), is 

Xz = - - 2 l n  t + , 

which  c o r r e s p o n d s  t o  t h e  u s u a l  Benne t  d i s t r i b u t i o n .  

I t  i s  n o t  d i f f i c u l t  t o  v e r i f y  t h a t  f o r  a* = 1 t h e  s o l u t i o n  Of (8)  w i t h  t h e  c o n d i t i o n  
(10) is  

~r = - -  x/4.  

If in the case of the usual Bennet distribution the dependence of the longitudinal cur- 
rent density on the radius is 

0 + 

then in the case described by the solution found the distribution for the same values of I 
and r02 is Gaussian: 

4~r~ 

i.e., the current density on the axis is two times higher than the Bennet density and decreases 
very rapidly exponentially in the radial direction. This fact apparently can play a large 
role for the transport of a high-current beam in the drift space, since the Bennet distribu- 
tion has long "tails" (the rms radius diverges), while for the Gaussian distribution which 
we have found all average values converge. It is, however, impossible to estimate the change 
in the radius of the beam under real conditions on the basis of the given stationary problem 
if the beam current I may be assumed to be conserved, which cannot be said about the parameter 
r02, because the transformation of the beam from a Bennet beam to a Gaussian one is a dynamic 
process. 

The value of the parameter a* = i is attainable with very high currents of the primary 
beam: I & 17 kA. We shall study the region of values of the parameter a* << i, which corres- 
ponds to a small perturbation of the Bennet distribution of the beam by the magnetic field 
generated by the secondary electron current in the plasma. 

Setting 

%~(r) : %z0(r) + a*%zl(r), (11)  

s u b s t i t u t i n g  (11)  i n t o  ( 8 ) ,  and r e t a i n i n g  t e rms  no h i g h e r  t h a n  f i r s t - o r d e r  i n f i n i t e s i m a l s  
in ~*, we obtain 

d d%zl % z l  x 1 
- ~  X ~ + 0 + x/8) ~ 4 (~ + x/8)2 ( 1 2 )  

Substituting 5 = (x - 8)/(x + 8) (12) is reduced to an inhomogeneous Legendre equation, and 
its solution, satisfying the conditions (i0), has the form 

8 

X~ 2(1+x/8) + 8 1 n ( t + x / 8 ) _ 4 z - - 8 ~  lnd+ t ) t  dt ,  (13)  
0 

whence it follows that near the axis the current density in the beam decreases with the in- 
creasing radius more slowly than in the usual Bennet distribution: 
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r 2 r 4 

64r~ " 

Solution (13) is valid for bounded values of r, such that the inequality 

a* %zt(r) < %~o(r) 

is satisfied. Under the conditions of a real experiment during propagation of a beam in a 
waveguide of finite radius this restriction is not very significant. Comparison of the solu- 
tions with ~* = 1 and a* << i shows that the effect of the longitudinal electron current in 
the secondary plasma gives rise to an equilibrium state of the REB, characterized by a steeper, 
than with the Bennet distribution, drop in the current density toward the periphery of the 
beam. As the parameter ~* increases, the slope of the dropoff increases, and at ~* = i the 
beam transforms into a Gaussian beam. At the same time it is not difficult to obtain the 
distribution of the secondary particle current. For the radial component of the density 

2 ng~if ( t - -  e - r - / 4 ro )  �9 
]1"2)= 2 ~  

The  r a d i a l  c u r r e n t  v a n i s h e s  on t h e  a x i s  o f  t h e  beam,  h a s  a maximum a t  r - r 0 ,  and  d r o p s  o f f  
as ~i/r in the limit r + ~. For the longitudinal component 

4rnVTe~r20ff 0 

S e t t i n g  P0 - mc,  we o b t a i n  t h e  t o t a l  l o n g i t u d i n a l  c u r r e n t  o f  s e c o n d a r y  e l e c t r o n s ,  f l o w i n g  
i n  t h e  beam ( r  < r 0 ) :  

I (~) ~ ~--- ~ _ ! I .  
VTe (JO 

For the values of the parameters presented above 1 (2)- I. 

Thus, the main result of this work is that for REB currents of I > I kA the longitudinal 
electron current of the secondary plasma significantly alters the configuration of the elec- 
tron base. 
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